边缘计算安全-边缘计算安全技术要求
接下来为大家讲解边缘计算安全,以及边缘计算安全技术要求涉及的相关信息,愿对你有所帮助。
文章信息一览:
边缘计算有什么特点?
高安全可靠性。边缘数据中心在接收到数据之后,可以对数据加密后再进行传输,提升了数据的安全性。边缘数据中心处理及传输可靠性对实时性业务至关重要,对用户体验影响直接、明显。宏桥智慧“云盒”具备强大算力,可以打造智慧灯杆的边缘计算能力。
优点: **低延时**:边缘计算技术能够在数据产生的地方即时处理数据,这样可以大幅度减少数据在网络中的传输时间,提高响应速度,减少网络拥堵,从而提升用户体验。 **高可靠性**:由于边缘计算降低了对于中央网络的依赖,即使主网络出现故障,边缘设备仍能独立运作,这增强了系统的整体可靠性。
延时低。边缘计算通过在源头终端附近处理数据来减少延迟。这可以形成更快的响应时间,更低的网络流量,以及更好的用户体验。可靠性高。边缘计算可以通过减少对网络的依赖性来提高可靠性。这是因为边缘设备即使在网络中断时也能继续工作。安全性强。
边缘计算的特点包括:可以提供更快的响应时间,因为数据不需要从中央位置传输到边缘;可以减少存储和带宽成本,因为只需要将少量数据传送到中央位置;可以改善安全性,因为数据不会通过公用网络进行传输。4)、可以大大减少对云服务的依赖。5)、可以在物理位置上处理和分析数据。
边缘计算是一种分布式计算模式,其特点包括以下几点:低延迟:边缘计算将数据处理和存储推向网络边缘,从而减少了数据传输的时间延迟,提高了数据处理的速度和效率。高可靠性:边缘计算将数据处理和存储分散到多个边缘设备上,减少了单一点故障的风险,提高了系统的可靠性和稳定性。
边缘计算的优势是:速度和延迟 处理数据的时间越长,相关性就越低。在数字工厂中,毫秒很重要,因为基于智能的系统会持续监控生产过程的各个方面,以确保数据的一致性,而将数据分析限制在创建它的边缘可以消除延迟,从而转化为更快的响应时间。
边缘计算可应用的领域有哪些?
零售业:边缘计算可以帮助零售商实时分析顾客数据、库存数据,优化商店布局和库存管理。 能源管理:边缘计算可以实时监测和优化能源系统,提高能源效率。 农业:通过实时监测和分析土壤、气候等数据,边缘计算可以帮助农民提高农业生产效率。
自动驾驶汽车 卡车车队自动组队是自动驾驶技术早期的应用之一。边缘计算使得除了领头卡车外,其他卡车均能实现无人驾驶,因为它们能够以极低延迟进行通信。 油气行业资产远程监控 在石油和天然气行业,资产的监控至关重要。
边缘计算主要应用于以下场景:无人驾驶 智能安防 语音协助 医疗保健 农业和智能农场 能源和电网控制 从十次方平台看到的,望***纳。
这里X代表其他新兴技术领域,例如大家熟悉的人工智能,以及区块链、隐私计算等技术。我们在落地过程中已经遇到越来越多这些方面的融合场景。总体来说,当下,边缘计算的形态是个运行时,新的场景、跨域融合等技术挑战不断被提出,包括在边缘任务卸载、去中心化协作式机器人等领域仍面临不小的挑战。
边缘计算,是指在靠近物或数据源头的一侧,***用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。
“云管边端”协同的边缘计算安全防护解决方案
1、“云管边端”安全防护解决方案总体功能架构如图1 所示。解决方案利用机器学习、诱骗防御、UEBA 等技术,针对边缘计算的业务和信令特点设计,结合“云管边端”多层面的资源协同和防护处理,实现立体化的边缘计算安全防护处理。
2、云管边端是协同边缘计算安全防护解决方案是恒安嘉新针对边缘计算发展提出的全面安全解决方案。方案综合考虑边缘计算产业中用户、租户、运营者多方面的要求,通过多级代理、边缘自治、编排能力,提供高安全性和轻量级的便捷服务。
3、G核心网控制面与数据面彻底分离,NFV令网络部署更加灵活,从而使之能分布式的边缘计算部署。边缘计算将更多的数据计算和存储从“核心”下沉到“边缘”,部署于接近数据源的地方,一些数据不必再经过网络到达云端处理,从而降低时延和网络负荷,也提升了数据安全性和隐私性。
关于边缘计算安全和边缘计算安全技术要求的介绍到此就结束了,感谢你花时间阅读本站内容,更多关于边缘计算安全技术要求、边缘计算安全的信息别忘了在本站搜索。